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Instrumentation & Control - Course 136

INTRODUCTION TO FREQUENCY RESPONSE

The problem of assessing the performance response of a
control system to changes in input and load is difficult. A
closed loop system may be unstable and subject to oscilla-
tion, not only does this make useful measurement impossible
but it may well be damaging. The answer to this is to
investigate the system with the loop copened, in which case it
will be stable, and from these results make a decision on the
closed loop behaviour, :

The guestion is therefore, can we predict the transient
response of a system by looking at the open loop character-
istic? Frequency Response testing is such a technique. The
system response to a range of sinusoidal inputs is measured
and the transient response is estimated from. these results,
This estimation is often quite crude but it is the practi-
cality of the method that magkes it a powerful tool.

It must be stated that real signals applied to the
system will not be sinusoidal but sinusoids are used as a
practical means of evaluation.

First Order Response

A first order device c¢an be considered as a single
capacity system. If the input to a first order system is
changed the output will immediately begin to indicate that
change. The rate of change will depend upon the capacitance
of the system,

TEMP
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Figure 1: First Order Response to a Step Change.
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Consider a device or system, which can be described as
first order, being subject to a variable fregquency, constant
amplitude input. The response of the device can be seen from
observation of the phase and amplitude of the output.

Typical first order devices include, thermocouples,
transmitters and I/P transducers. Another example would be
to cycle the inflow to a tank to cause a variation of the
level about the set point (inflow = input, level response =
output). The level should be able to follow the input for
low frequency variation of inflow. There should be no phase
lag and no loss of amplitude at low frequencies. As the fre-
quency of the cycling input is increased the tank level is
less able to respond to the inflow changes so that the level
fluctuations will decrease and the phase lag will increase.

Inflow Level
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Figure 2: Response of System to Sinusoidal Inputs,

It would be advantageous to be able to describe both
magnitude and phase lag mathematically. Assuming that the
outflow (g,) is laminar flow:
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Figure 3: Open Tank System,

= inflow

1e]
-
i

outflow

in]
0
] i

capacitance (volume/unit level)

i

hydraulic resistance
level

=
1}



inflow - cutflow = rate of accumulation

We must assume that laminar outflow results in the out-
flow being a function of the level (g, = h/R). Substituting
this relationship in place of q4 in equation (1).

h _,dn
ai ~ g = C 3

dh h

i = C g + ®
Rgj = RC $% + h (2)

The quantity RC is the time constant for the system and
iz defined as the time required for a responsed 63.2% to an
appl ied step change to occur. For example consider a temper-
ature transmitter subjected to a 100°C change in tempera-
ture, The time required to indicate 63.2°C change will be
the time constant 63.2°C change will be the time constant for
the transmitter.

The first order equation with the time constant will be

k] — .d_h
Rg; - T 3¢ +h (3)

This equation expresses the system in terms of time. We
wish to consider the response of the system to a variable
frequency input. To achieve this the usual method is to take
the Laplace transform of this equation; this can be consider-
ed as changing an expression from a function of time to a
function of freguency. The following simplified table lists
the only Laplace operations that will be used in this course:

Function Transform
£(t) LIE(t)] =/ e~Stf(t)dt = F(S)
I = £(4 1 =
£i{t) f(dt) L{fi(t)] sf(s)
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Taking the Laplace transform of equation (3) results in:

RLIqj] TsLih] + Lih]

Lihl{Tg + 1)

Our prime interest is in the ratio between output and
input. This is more usually, in control theory, referred to
as the transfer function,

For this example the output will be the level (h) and
the input the inflow (qj).

L[h] R

Ligi] = 1T + Tg

This can be shown in block diagram form as:

Qp (5) | R H (s}

Consider the ratio of level to inflow (input to ocutput)
as a function G(S) which describes the given application when
the hydraulic resistance is unity (R = 1)}.

then; Gs = I—W
s

This is the general format of a first order device or
system transfer function with a time constant T and a low
frequency gain of one. Knowing the transfer functicon enables
the calculation of phase lag and amplitude at a particular
frequency to be undertaken.
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First Order Lag

The phase lag is the angular difference at some point in
time, between the cycling input and the corresponding cycling
output of the system,

Tan (¢) = wt where, G{S) = G(3jw)
» = tan—1 (wt) (lag)
G(jw) is a complex number, treated as a vector guantity,

the modulus of which ig the steady state sinusoidal response
and the phase angle is the phase shift of the system,

First Order Amplitude Ratio

The amplitude ratio is the ratio of the output amplitude
to the input amplitude, ie:

1

X
Xs V1 + (wr)2

output amplitude

where, X

X

o = input amplitude

W = frequency in radians per second
T = first order time constant

These formulae can be applied to any device which
approximates a first order response. Rather than express the
amplitude ratio as a decimal value it is more usually stated
in decibels (dB) and designated the magnitude ratioc (M).

M = 20 logip (-"E) dB
Xo
Using decibels rather than dJdecimals will improve the
readability of the Magnitude Ratio scale.

Example: What is the magnitude ratio in decibels when the
amplitude ratio in decimal form is 0.33.

X

M = 20 logip (x) = 20 loglo (0.33)
= 20 (T.5185)
= 20(-.4815)

= -9.63 dB
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For any system it is possible therefore to calculate the
magnitude ratio and phase lag at any particular frequency as
shown in the diagram.

To evaluate a system.fully in such a way would require a
large number of individual plots and it is therefore much
simpler to plot a graph of magnitude and phase shift against
a base of frequency. Such a graph is called a Bode Plot.

Example — Plot the magnitude ratio and phase lag Bode
curves for a temperature transmitter which approaches a first
order response with a 2 second time constant.

. 1
60w = 35w

Table M and ¢ values when w = 0.01, 0.1, 0.5, 1 and 10
rads/sec.

Solution
w = 0.01
X 1
—= = 0,999
Xg V1 + (.01 x 2)2
M = 20logip (0.999) = -.0087 4B

tan=t (.01 x 2) = 1.15° lag
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The same method can be used for each frequency point
resulting in the following table.

W M(dB) s
01 -, 008 -1.15°
ol ~,175 ~11.3°
5 -3.0 -45°

1.0 =-7.0 ~63,4°

10.0 ~26.0 -87.1°

Plotting these values will result in the Bode Plot
shown. If lines are drawn tangent to the magnitude curve
along the horizontal and sloped curves they will intersect at
what is called the corner frequency. The regciprocal of the
corner freqguency will be the time constant of the system.
For a first order regponse the magnitude ratio will always he
-3 dB at the corner fregquency. For a first order system the
response 1s usually considered -flat until the corner fre-
quency is reached and it will then drop off at 20 4B per
decade or 6 4B per octave above the corner frequency.

Straight Line Approximation (First Order System)

For a first order sgystem it 1is often sufficient to
approximate the Bode plot by straight line methods.

M Curve

1, Locate the corner frequency {equal to reciprocal of Time
constant (I/T)).

X 1 B 1

——

%o 14+ (wt)2 1 + (T/T)2

=
n

1
20 logyg — = =3 dB
2

tan-l(wt} = tan—l = 45°

1
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2. Sketch the magnitude curve along the 0 dB line (or the
stated low frequency magnitude) to the corner frequency
and then slope down at 20 dB/decade.

3. Smooth the M curve to include the -3 dB point, Return
to the straight line approximation 1 octave up and 1
octave down from the corner frequency

1l octave up = 2 x we
1l octave down = we/2

¢ Curve

4. Use a straight line approximation with 45° lag at the
corner frequency, 0° lag 1 decade down, and 90° 1 decade
up from the corner.

1 decade up = 10 x we, 1 decade down = wc/10,

5. At 1 decade below the corner frequency, the phase lag

will be approximately 6°%.
¢ = tan—1 (9-,;7]-“—'11) = tan~} (0.1) = 5,7°

6. At 1 decade above the corner frequency the phase lag

will be approximatly 84°,
¢ = tan—l (i%E) = tan~1 10 = 84.3°
7. Smooth the phase curve about the straight line to

include the 6?2, 45° and 84° points.

Example sketch the Bode M and ¢ curves for the following
transfer function:

1

GOIw) = 510w

Solution: The transfer function describes a first order

system.

1l

Corner Frequency 1/T = we {T = 0.1)
| we = 10 Rad/sec

M = 0 dB until wec, and will then drop at
20 dB/decade

M=-34dB @ we, ¢ = 45° @ wc
¢ = 6° @ 1 Rad/éec (0.1 wc}

¢ = g4° 1p0 Rad/sec (10 wc)
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Plot the curves of the transfer function,

L 1
¢ W) = 1% o1 (3n
on this graph paper.
i} |
IBR )
. 4
\ 5 5 50 SN _'503 1020

Analysis of Bode Plots

Bode plots can be constructed in a similar manner for
complete control systems, Recall that a condition of margin-
al stability exists when the total loop gain is one and the
phase lag is 180°. Controller settings must be adjusted to
ensure the system does not approach the marginal stability
condition. -
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The control objective is to correct a wide range of dis-
turbances as quickly as possible without danger of instabil-
ity. This can be best achieved by using the highest possible
proportional gain (narrowest PB) whilst ensuring that the
180° lag comes at a high a frequency as possible to ensure
stability. Stable control is provided if there is an
adequate margin between the 180° phase lag frequency and the
frequency where the overall loop gain is one.

Problem

Consider a pure single capacity system (a single capa-
city system requires all the components in the loop, except
the tank, to be capable of instantaneous response - if not,
the system is multi-capacity). What sort of control modes
would be specified and what would the settings be? (Consider
the reaction curve formulae in 136.00-3),

Solution

A pure single capacity system will exhibit a first order
response. The maximum phase lag possible with a first order
system is only 90° at high frequency. The total lag of 180°
cannot be achieved so it is not possible for the system to
sustain oscillations. The controller gain can be infinite
(0° PB) and stable control is possible with no offset.

Clearly we are dealing with a hypothetical system, Pure
first order systems are, to all intents and purposes, not
possible. A real system will consist of several sub-systems
exhibiting, at 1least, first order response characteristics,
The overall system response will certainly be higher than
first order and a phase shift of 180° will usually be achiev-
able,

Under "real" conditions therefore we must define the
stability criteria. The terms used are gain margin and phase

margin.

Gain Margin

The gain margin is the difference in gain, expressed in
dB, between a loop gain of one (0 dB) and the loop gain which
occurs when the phase lag is 180°,

Example: The magnitude ratio value may be ~6 4B at a
phase lag of 180°. The gain margin in this
-instance will be:

GM = 0 - (-6 dB) = 6 dB
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SYSTEM‘M'CURVE

ey w—— —b‘l——'b— ———

¢ CURVE
not lower than 140°

PHASE MARGIN

} GAIN MARGIN —— 7~ -

not higher 1332_5(1_3‘ _90°
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FREQUENCY

Figure 6: Bode Plot of Stable System,

Gain Margin >5 dB
Phase Margin >40°

System M

Qgrve

- 0*

- 90°

- 180°

frequency

Figure 7: Bode Plot of Unstable System.

Gain Margin -~ 0 - xdB = -xdB (unstaﬁle)
Phase Margin - 180° - y° = - (y - 180°) unstable
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Clearly, for the example quoted, at the 180° phase lag
frequency the overall gain is less than 1, ie, the system is
stable.

The gain wmargin is positive * for negative decibel

values., A negative gain margin denotes instability. Typical
design value gain margins would be 5 - 10 dB.

Phase Margin

The phase margin is the difference between the phase lag
of 180°, and the lag which occurs when the magnitude is 0 dB
(Gain = 1). : .

Example: 1If the phase lag of a system is 145° when the loop
gain is one, the phagse margin will bhe:

PM = 180° - 145° = 35°

Clearly this indicates a stable condition ,since, as gain
falls with increasing phase shift, at the 180° point the gain
will be less than one.

The phase margin is positive for phase lags less than
180° (stable system) and negative for phase margins greater
than 1lB80°,

To make the system shown in Figure 7 stable, it will be
necessary to lower the proportional gain (increase the PB)
until the preferred value of phase margin is achieved (shown
by dotted line). This adjustment of gain will not affect the
phase shift, :

Problem

Sketch the M and ¢ curves for the system transfer func-
tion given. This transfer function represents the propor-
tional control of a system which is approximated by three
first order time constants of 0.5, 0.05 and 0.005 seconds.
Determine the value of controller gain (k) that is required
to produce 45° phase margin. Initially set K = 1.0.

- 1
{1 + 0.5(3w)) (1 + 0.05(jw)) (1 + 0.005(Jw)})

G(jw)

- 13 -
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Solution

Corner frequencies will occur at the reciprocal of the
three time constants, ie, 2, 20 and 200 rads/sec.

A phase margin of 45° requires a total log of 135°.

Sketch the curves using the straight line approximation
method. '

At the frequency when the phase margin is 45° the M curve
must be shifted such that M= 0 dB when ¢ = 135°.

From the curves sketched, the 135° lag occurs at H a
frequency of 20 rad/sec and the corresponding m curve value is
-23 dB.

Check: Calculate the phase lag at 20 rad/sec.
¢ = tan~l (0.5 x 20) + tan~l (0.05 x 20) + tan~l (0.005 x 20)
¢ = 84.3° + 45° + 5.,7° = 135°

Calculate the magnitude ratio at 20 rad/sec.

1 1 4

o 7vQ1 + (0.5 f 20)2) V(1 + (0.05 x 20)2) V(1 + (0.005 x 20)2)

(10.04)(1.41)(1.004)

X 2
T = 0.07

. M= 20 logyg 0.07 = =23 dB

To give phase margin of 45°, (ie, gain = 1 at phase lag of
135°) M curve must be shifted up by 23 dB.

Loop gain must therefore equal one.
Present loop gain is 0.07,

. for locp gain of one controller gain must be
increased. Such that 0.07 ke = 1

« ko = e

ke = 14,29

- 14 -
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Decibels and Magnitude Ratio
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A useful table for this type of work is the decibel and
magnitude conversion table. The regquired decibel change 1is
tabled with the equivalent gain (positive shift) or loss
(negative shift). For the previous problem an°’ increase in
gain is 23 dB was required for the M curve. Locate 23 4B on
the table and read the gain factor (Gain = 14.2) necessary to
achieve thig shift.

Control Mode Response

If the transfer functions for wvarious control modes are
known, Bode plots can be sketched to show the controller
frequency response characteristics.,

Proportional

Straight proportional control will not effect the phase
lag. It can only shift the M curve up or down by narrowing
or widening the band. Recall that the 180°¢ phase reversal of
the proportional controller is ignored in phase considera-
tions as it is always present.

0° g

Figure 8: Proportional Control: G{3jw) =k

Proportional Plus Reset

This combination can be represented by a pure integra-
tion term (1/jWT) and a first order lead term (1 + jwT). The
resulting M curve will drop away from the steady state gain
limit (R) at 20 4B per decade until the corner frequency is
reached., The first order lead will now cancel the effect of
the pure integration resulting in a flat M curve above the
corner fregquency. There will be a practical low frequency
gain limit with a proportional plus reset controller.
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1

|
-90 4 |
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Figure 9: Proportional Plus Reset Control
L)
JwTy

G{jw) = K(1 +

From this diagram it can be seen that reset will provide
a high steady state gain at low freqguency (sustained error
condition) but the controller. will approximate straight
proportional response for high frequency disturbances.

Proportional Plus Derivative

The proporticnal plus derivative combination can be
represented by a first order lead functicen (1 + jwT). The M
curve will be flat until the corner fregquency is reached and
the first order lead will then cause a rise at +20 dB/decade
until the high frequency gain 1limit of the c¢ontroller is
reached,

M
+90 l
+45 E
g
0 ¢

— i

1/7d

Figure 10: Proportional Plus Derivative Control k(1 + ij).
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From examining this Bode plot, it c¢an be seen that
derivative action will provide a large gain response at high
frequency (sudden disturbance) but the control wjill approach
straight proportional in the steady state.

Three Mode Controller

The three mode control response c¢an be sketched by
combining the last two Bode Plots. The M curve will drop off
at 20 dB/decade until the reset corner is reached, and then
the curve will be flat until the frequency reaches the rate
Corner. The resultant M curve will appear as a notch, the
dimensions of which are dJependent upon the controller
settings. '

CONTROLLER
GAin RESET wATE
INCREASE RPH —e= e [NCREASE MM

FREQUENLY

Figure 11: Three Mode 'M' Curve.

Controller Tuning

If the reset and derivative modes are minimized, ie,
virtually proportional only control and therefore the notch

base will be very wide. The base of the notch can be raised
by narrowing the PB and until the system oscillates. This
point {(loep gain = 1, ¢ = 180°) can be considered as the gain
limit for the system.  The band can now be widened

(approximately x 2) to lower the notch base away from this
frequency.
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Figure 12: Adjustment of Proportional Band.

The reset rate can now be progressively increased until
the system again approaches the gain 1limit and cycling
appears. This increase in reset rate shifts the left side of

the notch until it encompasses the gain limit.
CRITICAL

)/ FREQUEREY

|
i
GALN
i LINIT
COATROLLER ;
GAIN —_‘U
|
|
|

FREQUENGY

Figure 13: Adjustment of Reset Rate.

Rest rate 1is then decreased to ensure stability. The
derivative time can be increased in small increments to
improve stability and decrease the magnitude of the process
deviations. This adjustment moves the right hand side of the
notch towards the gain limit.

|

|

|

|

COMTROLLEN ¢
GAIN |
|

|

'l

FREQUEHCY

Figure 14: Tuned 3 Mode Controller 'M' Curve,

The controller is now tuned around the critical fre-
quency of the actual system being controlled. :

Derivative action (lead) will shift the 180° log fre-
quency to a higher value. The high frequency values of the
magnitude c¢urve are also shifted upwards by the rate action.
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The flatter the original system phase curve, the more
benificial the addition of derivative mode will be.

Reset mode will increase the overall phase lag and the
low freguency response magnitude, ie, a narrower effective
frequency band.

- Proportional band adjustment will only effect the M
curve which can be moved up or down to provide a suitable
phase margin., The gain or loss factor can be applied against
an assumed gain at one to £find the operating proportional
band.

Control Mode Review

1. Loop components which increase lags will reduce the
quality of control.

2, Too narrovw a proportional band can raise .the loop gain
high enough to result in cvcling.

3. Constant amplitude cycling is pioduced by a loop gain of
one and a phase lag of 180°.

a, Reset action will produce high steady state gain,

5. Phase lag is increased by the application of reset but
offset is eliminated. Increased reset rate can cause
instability due to increased negative phase shift,

6, Derivative mode partly corrects for phase lags about the
loop and will allow the use of higher gains without
instability. The 180° phase lag frequency is shifted to
a higher freguency.

7. Excessive derivative time will result in process
cyeling,
8. Derivative mode can reduce overshoot magnitude after an

abrupt disturbance,

9. Open loop characteristics of a process can determine the
closed loop response. (Reaction Curve Method.)
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Second Order Frequency Response

To date, we have considered only the dynamits of systems
that store energy in one element only - first order systems.
We have seen that these systems, even with a step distur-
bance, respond merely with a gradual delayed output. These
systems are stable, they cannot, on their own, oscillate or
produce an output greater than input., Remember however that
cascaded first order systems can become unsgtable.

If a system has more than one place to store energy, its
action can not only become oscillatory but it can also pro-

duce amplification. Second order systems, those with two
major storage locations are typically described by the
pneumatically actuated control valve. The force operating

the valve can be derived from a controller._

Consider the motion of a damped spring after being sub-
jected to a displacing force k[£(t)}].

‘ s
B

Figure 15: Spring-Mass System Example.
(a) Pneumatically-Actuated Valve.
{(b) Diagrammatic Represgentation.
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The cyclic recovery of the weight about the equilibrium
point will approximate the response of a closed <control loop
“after being subjected to a transient disturbance. The spring
motion c¢an be described by the following second order

equation.

d2x
M___+R%§+kx=k £(t)
dt2
where M = mass of the spring bob
R = Damping resistance of dash pot
k = spring constant

Depending upon the value of the damping resistance, the
system can be either overdamped, c¢ritcally damped or under
damped. The response curves are shown in Figure 16.

I e \\ Underdamped
‘ // \ _.—Criticalty Damped
M ’/ ""{( Overdamped
AN
- 0
- 90
-180

wC

Bode Plot for 2nd Order System

It can be seen from the diagram that an under damped
second order device c¢an make effective contrel Jdifficult.
Second order systems, eg, control valves, should not be sub-
jected to large step c¢hanges in signal. The phase lag for a
second order system at the corner frequency 1is 90°, the
maximum phase lag is 180° and the M curve will drop away at
40 dB per decade above the corner fregu«icy.
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ASSIGNMENT

The transfer function for a thermocouple can be repre-
sented as: '
k

—

1l + jwT

If a particular thermaocouple has a time constant of 5
seconds, at what frequency will the signal be attenuated
by 50%7?

Answer: .346 Rad/sec.

A temperature transmitter responds as a first order de-
vice with a 10 second time constant., Sketch the M and
¢ Bode curves for this transmitter, labelling signifi-
cant points., .

An objective of a control system is closes control with-
out danger of instability. Explain how these conflict-
ing objectives can be achieved,

Define the terms gain margin and phase margin. Use a
Bode plot to aid your discussion. What is the effect on
these two margins if the proportional band is widened?
(M curve shifted down.)

A control system is represented by two first order time
constants of 2 seconds and one first order time constant
of 10 seconds and is under straight proportional con-
trol. What proportional band setting will provide a
phase margin of 30°? (Just use straight line approxima-
tions.)

1
G(jw) =

(1 + 2(3w))2(1 + 10{3jw))

Answer: 16%

Sketch a general Bode plot for a complete control system
with a control gain of one. Show how the M and ¢ curves
are shifted as derivative and reset are added. What is
the effect of increasing or decreasing the proportional
band setting?
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Explain briefly why reset mode can decrease the stab-
ility of a given control systemn.

Consider the Bode plots of two separate systems. The
first system has a relatively flat M curve and the
$ curve drops off very sharply. The second system has a
significant M curve slope but the ¢ curve slope is very
gradual. Sketch these two Bode plots and determine the
system for which the addition of derivative will be the
most useful, '

M.J. MacBeth
D, Tennant



