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Instrumentation & Control - Course 136

INTRODUCTION TO FREQUENCY RESPONSE

The problem of assessing the performance response of a
control system to changes in input and load is difficult. A
closed loop system may be unstable and sUbject to oscilla­
tion, not only does this make useful measurement ~mpossible

but it may well be damaging. The answer to this is to
investigate the system with the loop opened, in which case it
will be stable, and from these results make a decision on the
010$eo loop behaviour.

The question is therefore, can we predict the transient
response of a system by looking at the open loop character­
istic? Frequency Response testing is such a technique. The
system response to a range of sinusoidal inputs is measured
and the transient response is estimated from, these results.
This estimation is often quite crude but it is the practi­
cality of the method that makes it a powerful tool.

It must be stated that
system will not be sinusoidal
practical means of evaluation.

First Order Response

real
but

signals applied to
sinusoids are used

the
as a

A first order device can be considered as a single
capaci ty system. If the input to a first order system is
changed the output will immediately begin to indicate that
change. The rate of change will depend upon the capacitance
of the system.

TEMP

T

TIME

Figure 1: First Order Response to a Step Change.
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Consider a device or system, which can be described as
first order, being sUbject to a variable frequen~y, constant
amplitude input. The response of the device can be seen from
observation of the phase and amplitude of the output.

Typical first order devices include, thermocouples,
transmitters and liP transducers. Another example would be
to cycle the inflow to a tank to cause a variation of the
level about the set point (inflow = input, level response =
output). The level should be able to follow the input for
low frequency variation of inflow. There should be no phase
lag and no loss of amplitude at low frequencies. As the fre­
quency of the cycling input is increased the tank level is
less able to respond to the inflow changes so that the level
fluctuations will decrease and the phase lag will increase.

Inflow Level

!\ If\;Low f , T ~

f{J
High f ·1 T I /\ ..

V V
Figure 2: Response of System to Sinusoidal Inputs.

It would be advantageous to be able to describe both
magnitude and phase lag mathematically. Assuming that the
outflow (go) is laminar flow:

qj---l

I~~r-__ q,
R

Figure 3: Open Tank System.

qi = inflow

go = outflow

C = capacitance (volume/unit level)

R = hydraulic resistance

h = level
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inflow - outflow = rate of accumulation

= C dh
dt

( 1 )

We must assume that laminar outflow results in the out-
flow being a function of the level (go = h/R) . Substituting
this relationship in place of go in equation ( 1 ) .

gi
h C dh

- R = dt

gi C dh h= at + R

Rqi RC dh + h ( 2 )= dt

The quantity He is the time constant for the system and
is defined as the time required for a responsed 63.2% to an
applied step change to occur. For example consider a temper­
ature transmitter subjected to a 100°C change in tempera­
ture. The time required to ind~cate 63.2°C change will be
the time constant 63.2°C change will' be the time constant for
the transmi tter.

The first order equation wi th the time constant will be

T dh + h
dt

( 3 )

This equation expresses the system in terms of time. We
wish to consider the response of the system to a variable
frequency input. To achieve this the usual method is to take
the Laplace transform of this equation; this can be lI:=onsider­
ed as changing an expression from a function of time to a
function of frequency. The following simplified table lists
the only Laplace operations that will be used in this course:

Function Transform

f ( t )

fI(t)

~

L[f(t)] = Joe-stf(t)dt = F(S)

L[fI(t)] = sf(S)
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Taking the Laplace transform of equation (3) results in:

RL[qi] = TSL!h] + Llh]

= L[h] (Ts + 1)

Our prime interest is in the ratio between output and
input. This is more usually, in control theory, referred to
as the transfer function.

For this example the output will be the level (h) and
the input the inflow (gi).

L[h]
L[qi]

R
= 1 + Ts

This can be shown in block diagram form as:

H (sj

Consider the ratio of level to inflow (input to output)
as a function G(S) which describes the given application when
the hydraulic resistance is unity (R = I).

then, 1
1 + Ts

This is the general format of a first order device or
system transfer function with a time constant T and a low
frequency gain of one. Knowing the transfer function enables
the calculation of phase lag and amplitude at a particular
frequency to be undertaken.
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First Order Lag

The phase lag is the angular difference at some point in
time, between the cycling input and the corresponding cycling
output of the system.

Tan (¢) = wt

¢ = tan- l (wt) (lag)

where, G(S) = G(jw)

G(jw) is a complex number, treated as a vector quantity,
the modulus of which is the steady state sinusoidal response
and the phase angle is the phase shift of the system.

First Order Amplitude Ratio

The amplitude ratio ia the ratio of the output amplitude
to the input amplitude, ie:

X 1

where, X = output amplitude

Xo = input amplitude

W = frequency in radians per second

T = first order time constant

These formulae can be applied to any device which
approximates a first order response. Rather than express the
amplitude ratio as a decimal value it is rrore usually stated
in decibels (dB) and designated the magnitude ratio (M).

M = 20 10910 dB

Using decibels rather
readability of the Magnitude

than decimals
Ratio scale.

will improve the

Example: What is the magnitude ratio in decibels when the
amplitude ratio in decimal form is 0.33.

M = 20 1°910 (--") = 20 10910 (0.33)Xo
= 20 (1. 5185)

= 20(-.4815)

= -9.63 dB
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For any system it is possible therefore to calculate the
magnitude ratio and phase lag at any particular frequency as
shown in the diagram.

TimePhase
lag· j!l

INPUT

/
/

.,/~PUT

To evaluate a system fully in such a way would require a
large number of individual plots and it is therefore much
simpler to plot a graph of magnitude and phase shift against
a base of frequency. Such a graph is called a Bode Plot.

Example - Plot the magnitude ratio and phase lag Bode
curves for a temperature transmitter which approaches a first
order response with a 2 second time constant.

G (jw) 1
= '1-'+=-'2("Jr.weT)

Table I1 and ¢ values when w;= 0.01, 0.1, 0.5, land 10
rads/sec.

Solution

w = 0.01

X 1
= = 0.999

XO V1 + (.01 x 2)2

M = 2010 910 (0.999) = -.0087 dB

= tan-I (.01 x 2 ) = 1.15 0 lag
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The same method can be used for each fr~quency point
resulting in the following table.

w M(dB) !
.01 -.008 -l.15°

.1 -.175 -11.3°

.5 -3.0 -45"

1.0 -7.0 -63.4'

10.0 -26.0 -87.1°

Plotting these values will result in the Bode plot
shown. If lines are drawn tangent to the magnitude curve
along the horizontal and sloped curves they will intersect at
what is called the corner frequency. The re,::iprocal of the
corner frequency will be the time constant of the system.
For a first order response the magnitude ratio will always be
-3 dB at the corner frequency. For a first order system the
response is usually considered . flat until the corner fre­
quency is reached and it will then drop off at 20 dB per
decade or 6 dB per octave above the corner frequency.

Straight Line Approximation (First Order System)

For a
approximate

M Curve

first order system it is often sufficient
the Bode plot by straight line methods.

to

1. Locate the corner frequency (equal to reciprocal of Time
constant (I/T)).

X 1 1
= =

Xo 1 + (wt)2 1 + IT/T)2

1
M = 20 10910 = -3 dB

2

= tan- l (wt) :::: tan-1 = 45'
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2. Sketch the magnitude curve along the a dB line (or the
stated low frequency magnitude) to the corner frequency
and then slope down at 20 dB/decade.

3. Smooth the M curve to include the -3 dB point.
to the straight 1 ine approximation 1 octave up
octave down from the corner frequency

1 octave up = 2 x we

1 octave down = wc/2

¢ Curve

Return
and 1

4. Use a straight line approximation with 45° lag at the
corner frequency, 0° lag 1 decade down, and 90° 1 decade
up from the corner.

1 decade up = 10 x we, 1 decade down =we/IO.

S. At 1 decade below the corner frequency, the phase lag
will be approximately 6°.

~ = tan-1 (O.lT) ~ tan-1 (0.1) = 5.7'
T.

6. At 1 decade above the corner frequency the phase lag
will be approximatly 84°.

If> = tan- 1 {lOT) = tan-1 10 = 84.3°
T

7. Smooth the
include the

phase curve about the
6°, 45 D and 84° points.

straight line to

Example sketch the Bode M and cfl curves for the following
transfer function:

G(jw) • 1 + ~.l(jW)

Solution: The transfer function describes a first order
system.

Corner Frequency = l/T = we IT : 0.1)

we = 10 Rad/sec

M • a dB until we, and will then drop at
20 dB/decade

M = -3 dB @ we, ~ • 45' @ we

~ = 6' @ 1 Rad/sec ( O. 1 we)

~ = 84' 100 Had/sec (10 we)
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Plot the curves of the transfer function,

G ( j w) = ~1-+---"-~-.~l~(J~'w~l

on this graph paper.

I~,~+-+-+~+l-++---I--.--I-....J.-HI+++f----+-+---+-+-+++-l-j

1----!---~H-+tHl---+-~-H++H,i+--+-++-J......I-+-!-J...'
f---f-.--+--+ -f--++-h-f-.---f-.--!-+-t+t-H+---+---I-I--4-H-1+-1

f---I--1f-- --J \ -- --.......J---I--1-H1H-H1+----+-f--f-!.-1-I-I4-C

-----1--- '-- __ +_+-H--~+--HI--Ittt
-+--+-,H-+

1
+H+--+---+-+-.. -l-f-I--I-+!

__---'_LI ____LU--'-*-__-.L_.J_.J_,j-'---'-l.Ll±o;---'----'-_~~-U.J
~ 10 5D 100 ~CO "10,)0

Analysis of Bode Plots

Bode plots can be constructed in a similar manner for
complete control systems. Recall that a condition of margin­
al stability exists when the total loop gain is one and the
phase lag is 180°, Controller settings must be adjusted to
ensure the system does not approach the marginal stability
condition.

- 10 -
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The control objective is to correct a wide range of dis­
turbances as quickly as possible without danger 9£ instabil­
i ty. This can be best achieved by using the highest possible
proportional gain (narrowest PB) whilst ensuring that the
180 0 lag comes at a high a frequency as possible to ensure
stability. Stable control is provided if ther~ is an
adequate margin between the 180 0 phase lag frequency and the
frequency where the overall loop gain is one.

Problem

Consider a pure single capacity system (a single capa­
city system requires all the components in the loop, except
the tank, to be capable of instantaneous response - if not,
the system is mul ti-capaci ty) • What sort of control modes
would be specified and what would the settings be? (Consider
the reaction curve formulae in 136.00-3).

Solution

A pure single capacity system will exhibit a first order
response. The maximum phase lag possible with a first order
system is only 90° at high frequency. The total lag of 180°
cannot be achieved so it is not possible for the system to
sustain oscillations. The controller gain can be infinite
(0° PB) and stable control is possible with no offset.

Clearly we are dealing with a hypothetical system. Pure
first order systems are, to all intents and purposes, not
possible. A real system will consist of several subTsystems
exhibi ting, at least, first order response characteristics.
The overall system response will certainly be higner than
first order and a phase shift of 180° will usually be achiev­
able.

Under "real" conditions
stability criteria. The terms
margin.

therefore we
used are gain

must define the
margin and phase

Gain Margin

The gain margin is the difference in gain, expressed in
dB, between a loop gain of one (0 dB) and the loop gain which
occurs when the phase lag is 180°.

Example: The magnitude ratio
phase lag of 180 0.

instance will be:

value may be -6 dB at a
The gain margin in this

GM " 0 - (-6 dB) " 6 dB

- 11 -
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FREQUENCY

0°------
-----1---

Ii} GAIN MARGIN

"iot-- not higher than 5dB 900------

SYSTEM'M'CURVE

'Ii CURVE

not lower than 140 0
- __...:::'1'+.....

PHASE MARGIN I!
__1- _

i

OdB

Figure 6: Bode Plot of Stable System.

Gain Marg in
Phase Marg in

>5 dB
>40 0

O·

90"

System MI ~/=e

+vte ---
--- ......... __ Gain

................. Margin

--- -----------_........~~-

l'{
I I'I I ,

--i "-
_-~~-~p:-;h=as!.-Margi-n_ _ _ Y

X

OdB

frequency

Figure 7: Bode Plot of Unstable System.

Gain Margin - 0 - xdB = -xdB (unstable)
Phase Margin - 180 0 - yO = - (y - 1800) unstable
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Clearly, for the example quoted, at the 180 0 phase lag
frequency the overall gain is less than 1, ie, ~he system is
stable.

The gain margin is pOsitive for negative
values. A negative gain margin denotes instability.
design value gain margins would be 5 - 10 dB.

Phase Margin

decibel
Typical

The phase margin is the difference between the phase lag
of 180 0

, and the lag which occurs when the magnitude is a dB
(Gain = 1).

Example: If the phase lag of a' system is 145 0 when the loop
gain is one, the phase margin will be:

Clearly this indicates a stable condit~on,since, as gain
falls with increasing phase shift, at the 180 0 point the gain
will be less than one.

The phase marg in is post tive for phase lags less than
180 0 (stable system) and negative for phase margins greater
than 180°.

To make the system shown in Figure 7 stable, it will be
necessary to lower the proportional gain (increase the PB)
until the preferred value of phase margin is achieved (shown
by dotted line). This adjustment of gain will not affect the
phase shi ft.

Problem

Sketch the M and ttJ curves for the system transfer func­
tion given. Thi s transfer funct ion represents the propor­
tional control of a system which is approximated by three
first order time constants of 0.5, 0.05 and 0.005 seconds.
Determine the val ue of controller gain (k) that is required
to produce 45° phase margin. Initially set K = 1.0.

G(jW) = 1
(1 + O.S(jw))(l + O.OS(jw))(l

- 13 -
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SOlution

Corner frequencies will occur at the reciprocal
three time constants, ie, 2, 20 and 200 rads/seco

A phase margin of 45° requires a total log of 135°.

of the

Sketch the curves using the straight line approximation
method.

At the frequency when the phase margin is 45" the M curve
must be shifted such that M = 0 dB when ¢ = 135".

From
frequency
-23 dB.

the curves sketched,
of 20 rad!sec and the

the 135 0 lag occurs
corresponding m curve

at H a
value is

Check: Calculate the phase lag at 20 rad/sec.

~ = tan- 1 (0.5 x 20) + tan- 1 (0.05 x 20) + tan- 1 (0.005 x 20)

~ = 84.3' + 45' + 5.7' = 135'

Calculate the magnitude ratio at 20 rad/sec.

x 1 1 4

(0.5 + (0.05 x 20)2) 'V(l + (0.005 x 20)2)

=--------
(10.04)(1.41)(1.004)

= 0.07

M = 20 10910 0.07 = -23 dB

To give phase marg in of 45", (ie. gain = 1 at phase lag of
135°) M curve must be shifted up by 23 dB.

Loop gain must therefore equal one.

Present loop gain is 0.07.

for loop gain of one controller gain must be
increased. Such that 0.07 kc = 1

kc

kc ~ 14.29

- 14 -
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Decibels and Magnitud. Ratio

MAG. ....TIO MAG. ItATIO MAG. ItAlIC MAG. RATIO

O. " o. " o. " o. "G." 'OSS G." LOSS GAIN lOSS GAIN LOSS

.1 1.01 .989 ••• 170 .589 '.1 ,...
~" 18.3 '.:U .122

~ 1.02 .977 '7 172 .584 '.2 ,...
~"

,,~ • .6.l ,118

~ 1,03 .966 '.8 17. .575 .~ 2.92 ~" 187 8,64 .116... 1.05 .955 4.' 17. .568 ••• 2.95 ~" 19.0 8.94 ,112
~ 1.06 .944 '.0 178 .562 ••• 2.98 ~..

19.3 .,. JOe

•• 1.07 .933 '.1 1.80 ~.. ••• 3.02 .330 19.5 ..... .106
7 1.08 .923 '.2 1.82 .550 '7 3.06 ~26 197 9,65 .103
.8 1.10 .912 '.3 1.84 ~" 9.8 3.10 ,323 20.0 10.0 .100

•• 1.11 .902 ••• 1.86 ~" ••• 3.13 .321
1.0 1.12 .891 ••• 1.88 .531 10.0 3.16 .316 21.0 11.2 .019

22.0 12.6 ~7'

I.' 1.13 .881 ••• J.90 .527 10.3 3.27 .305 23.0 16' .071
1.2 1.15 .871 '7 1.93 .520 10.5 3.35 .297 24.0 15.8 .063
1.3 1.16 .861 '.8 1.95 .512 107 3.43 .292 2.5.0 17.8 .056

'''' 1.17 .851 ••• 1.07 .508 11.0 3.55 .282
I~ 1.19 .841 '.0 1.99 ~OI 26.0 20.1 ~"

11.3 3...7 .273 27.0 22.4 .045

I.' 1.20 .832 '.1 2.02 .495 11.5 37' .266 28.0 25.2 .040
17 1.22 .822 '.2 2.0. ""0 117 3.U '58 29.0 28.2 ",035

1.8 1.23 .813 '.3 2.0" .483 12.0 3.98 .251 .30.0 31.6 .032

I.' 1.24 .803 ••• 2.09 .479
2.0 1.26 796 ••• 2.11 .473 12.3 4.T3 ,243 31.0 35.5 M8

13~ 4.23 .236 32.0 40.0 .025
2.1 1.27 7" ••• 2.14 .468 137 4.33 .232 33.0 .U.9 ~33

3.3 1.29 .776 '7 2.17
..." 13.0 4.47 .224 34.0 50.2 .020

2.3 1.30 769 '.8 2.19
..." 35.0 56.2 ~18

2. 1.32 759 ••• 2.22 .453 13.3 4.64 .216
2.' 1.33 748 7.0 2.24 .447 13~ '7' .'212 36.0 63.2 ~16

13.7 4.86 '06 37.0 70.9 .014

2.' 1.35 .741 7.' 2.27 .442 1.4.0 5.01 .199 38,0 79.5 .013
2.7 1.37 734 7.2 2.29 .438 39.0 89.2 .011
2.8 1.38 734 7.3 2.33 .m "'.3 5.19 .19;'1 40.0 100 ~IO

2.' 1.40 716 7... 2.35 .427 14.5 5.31 .1117
3.0 LA 1 708 7.' 2.37 ..." 167 5..45 .183 .41.0 112 .00'

15.0 5.62 .178 42.0 12' .008
3.1 1..43 .69!! 7.' 2...0 ..417 .43.0 16. .007
3.2 1.44 .692 7.7 2..43 ..4 I 2 1.'-3 5.83 .172 .4.4.0 '" .006
3~ 1.A7 .683 7.8 2..46 ..407 15.5 5.99 .167 .45.0 178 .006
3.' 1.A8 .676 7.' 2.48 .403 15.7 6.11 .163
M l.!iO .66D 8.0 2.5\ .398 16.0 6.3' .158

3.' I.ST .661 81 2.'5 .39.4 16.3 6.52 .155
37 1.53 .652 8.2 2~7 .388 16.5 6.69 .1049
3.8 1.55 .646 8.3 2.61 .385 167 6.82 .146
3.' 1.57 .639 ,.• 2.63 .380 11.0 7.08 .1.41
'.0 1.58 .631 8.' ,.... .376

11.3 7.34 .137
'.1 1.60 .623 ••• 270 .371 17.5 7.50 .'33
'3 1.62 .617 8.7 '73 .367 177 7.69 .130
'.3 1.64 .609 8.' 2.76 .363 18.0 7.94 .126

••• 1.66 •603 8.' 27• .360.., 1.68 .595 •.0 ':l.82 .355-
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A useful table for this type of work is the decibel and
magni tude conversion table. The required decibel change is
tabled with the equivalent gai~ (positive shift) or loss
(negative shift). For the preV10us problem an· increaseTn'
gain is 23 dB was required for the M curve. Locate 23 dB on
the table and read the gain factor (Gain = 14.2) necessary to
achieve this shift.

Control Mode Response

If the transfer functions for various control modes are
known, Bode plots can be sketched to show the controller
frequency response characteristics.

Proportional

Straight proportional control will not effect the phase
lag. It can only shift the M curve up or down by narrowing
or widening the band. Recall that the 180 0 phase reversal of
the proportional controller is ignored in ph~se considera­
tions as it is always present.

M

0'

Figure 8: proportional Control: G(jw) = k

Proportional Plus Reset

This combination can be represented by a pure integra­
tion term (l/jWT) and a first order lead term (1 + jWT). The
resul ting ~1 curve will drop away from the steady state gain
limit (K) at 20 dB per decade until the corner frequency is
reached. The first order lead will now cancel the effect of
the pure integration resulting in a flat M curve above the
corner frequency. There will be a practical low frequency
gain limit with a proportional plus reset controller.

- 16 -
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M

o

-45

-90

I/'!'i

Figure 9: Proportional Plus Reset Control

G(jw) = K(l + 1
jW'!'i)

From this diagram it can be seen that reset will provide
a high steady state gain at low frequency (sustained error
condition) but the controller- will approximate straight
proportional response for high frequency disturbances.

Proportional Plus Derivative

The proportional plus derivative combination can be
represented by a first order lead function (1 + jwT). The ~1

curve will be flat until the corner frequency is reached and
the first order lead will then cause a rise at +20 dB/decade
until the high frequency gain limit of the controller is
reached.

+90

+45

o

M ~_

LX
I/'!'d

Figure 10: Proportional Plus Derivative Control k(l + jwT).

- 17 -
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From examining this Bode plot, it can be seen that
derivative action will provide a large gain response at high
frequency (sudden disturbance) but the control will approach
straight proportional in the steady state.

Three Mode Controller

The three mode control response can be sketched by
combining the last two Bode Plots. The M curve will drop off
at 20 dB/decade until the reset corner is reached, and then
the curve will be flat until the frequency reaches the rate
corner. The resultant M curve will appear as a notch, the
dimensions of which are dependent upon the controller
settings.

Figure 11: Three Mode 'M' Curve.

Controller Tuning

If the reset and derivative modes are minimized, ie,
virtually proportional only control and therefore the notch
base will be very wide. The base of the notch can be raised
by narrowing the PB and until the system oscillates. This
point (loop gain = l, ¢ = 180 0

) can be considered as the gain
limit for the system. The band can now be widened
(approximately x 2) to lower the notch base away from this
frequency.

- 18 -
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'lllltH:J FRE~UE~CY

I
I

Figure 12: Adjustment of Proportional Band.

COHUOll.E1
GAIM

The reset rate can now be progressively increased until
and cycling
left side of

the system again approaches the gain limit
appears. This increase in reset rate shifts the
the notch until it encompassps the gain limit.

CRITICALl/ fRfQUUCY

I GIL~
l~llMIT

fREQUENCY

Figure 13: Adjustment of Reset Rate.

Rest rate is
derivative time
improve stability
deviations. This
notch toward 5 the

then decreased to ensure stability. The
can be increased in small increments to

and decrease the magnitUde of the process
adjustment moves the right hand side of the
gain limit.

tDNUOLl(l
GA 1M

I
I
I
I
•I

fUQUEHtT

Figure 14: Tuned 3 Mode Controller 1M' Curve.

The controller
quency of the actual

is now tuned around the
system being controlled.

critical fre-

Derivative action (lead) will shift the 180 0 log fre­
quency to a higher value. The high frequency values of the
magnitude curve are also shifted upwards by the rate action.

- 19 -
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The flatter the original system phase curve, the more
benificial the addition of derivative mode will be.

Reset mode will increase the
low frequency response magnitude,
frequency band.

overall pha"se lag and the
ie, a narrower effective

Proportional band adjustment will only effect the M
Curve which can be moved up or down to provide a sui table
phase margin. The gain or loss factor can be applied against
an assumed gain at one to find the operating proportional
band.

Control Mode Review

1. Loop components which increase lags will reduce the
quality of control.

2. Too narrow a proportional band can raise .the loop gain
high enough to result in cycling.

3. Constant amplitude cycling is produced by a loop gain of
one and a phase lag of 180°.

4. Reset action will produce high steady state gain.

5. Phase lag is increased by the application of reset but
offset is el imina ted • Increased reset rate can cause
instability due to increased negative phase shift.

6. Derivative mode partly corrects for phase lags about the
loop and will allow the use of higher gains without
instability. The 180° phase lag frequency is shifted to
a higher frequency.

7. Excessive
cycling.

derivative time will result in process

8. Derivativp mode can reduce overshoot magnitude after an
abrupt di.sturbance.

9. Open loop characteristics of a process can determine the
closed loop response. (Reaction Curve Method.)

- 20 -
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Second Order Frequency Response

To date, we have considered only the dynamibs of systems
that store energy in one element only - first order systems.
We have seen that these systems, even with a step distur­
bance, respond merely with a gradual delayed output. These
systems are stable, they cannot, on their own, oscillate or
produce an output greater than input. Remember however that
cascaded first order systems can become un~table.

If a system has more than one place to store energy, its
action can not only become oscillatory but it can also pro­
duce amplification. Second order systems, those with two
major storage locations are typically described by the
pneumatically actuated control valve. The force operating
the valve can be derived from a controller.

Consider the motion of a damped spring after being sub­
jected to a displacing force k[f(t)].

k

F

m

+~ c ~T 7/7777/

Figure 15: spring-Mass System Example.
(a) Pneumatically-Actuated Valve.
(b) Diagrammatic Repre~entation.
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The cyclic recovery of the weight about the equilibrium
point will approximate the response of a closed ~ontrol loop
after being subjected to a transient disturbance. The spring
motion can be described by the following second order
equation.

dt 2
+ R dx

dt + kx = k f(t)

where M = mass of the spring bob
R = Damping resistance of dash pot
k = spring constant

Depending upon the value of the damping resistance, the
system can be either Qverdamped, critcally damped or under
damped. The response curves are shown in Figure 16.

/-'\ Underdamped

/ ~\ Critically Damped
I ,-

f--'M"'- .L__--:-::.--;:::'~ Overdamped

'~\ ---------
-It

I
I

we
Bode Pl~~_£~~ 2nd Order System

o

90

180

It can be seen from the di aqram that an under damped
second order device can r:lake effective control difficult.
Second order syst.ems, eg, control valves, should not be sub­
jected to large step changes in slgnal. The phase lag for a
second order system at the corner frequency is 90 0

, the
maximum phase lag is 180" and the r1 curve will drop away at
40 dB per decade abOVe the corner [regu'~dcy.
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ASSIGNMENT

1. The transfer function for a thermocouple can be repre­
sented as;

k
1 + jwT

If a particular thermaocQuple has a time constant of 5
seconds, at what frequency will the signal be attenuated
by 50%?

Answer: .346 Rad/sec.

2. A temperature transmitter responds as a first order de­
vice with a 10 second time constant. Sketch the M and
ep Bode curves for this transmitter, labelling signifi­
cant points.

3. An objective of a control system is close. control with­
out danger of instability. Explain how these conflict­
ing objectives can be achieved.

4. Define the terms gain margin and phase margin. Use a
Bode plot to aiq your discussion. What is the effect on
these two margins if the proportional band is widened?
(M curve shifted down.)

5. A control system is represented by two first order time
constants of 2 seconds and one first order time constant
of 10 seconds and is under straight proportional con­
trol. What proportional band setting will provide a
phase margin of 30°? (Just use straight line approxima­
tions. )

G(jw) ~
1

(1 + 2(jw»2(1 + 10(jw»

Answer: 16%

6. Sketch a general Bode plot for a complete control system
with a control gain of one. Show how the M and ¢ curves
are shifted as derivative and reset are added. What is
the effect of increasing or decreasing the proportional
band setting?
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7. Explain briefly why reset mode can decrease the stab­
ility of a given control system.

8. Consider the Bode plots of two separate systems. The
first system has a relatively flat M curve and the
tP curve drops off very sharply. The second system has a
significant M curve slope but the tP curve slope is very
gradual. Sketch these two Bode plots and determine the
system for which the addition of derivative will be the
most useful.

M.J. MacBett:
D. Tennant


